Full Text Journal Articles from
Abstract 32957845


Find full text journal articles

Model for type 2 diabetes exhibits changes in vascular function and structure due to vascular oxidative stress and inflammation.

PMID: 32957845 (view PubMed database entry)
DOI: 10.1080/10520295.2020.1823480 (read at publisher's website )

Ahmad Khusairi Azemi, Siti Safiah Mokhtar, Low Jen Hou, Sharifah Emilia Tuan Sharif, Aida Hanum Ghulam Rasool,

We used a type 2 diabetes rat model produced by a high fat diet (HFD) followed by low dose streptozotocin (STZ) to study diabetic vasculopathy. Animals were evaluated for early vascular structural changes, endothelial function, inflammation, lipid profile and oxidative stress. We used 20 male Sprague-Dawley rats divided equally into control and diabetic groups. Diabetic rats were fed an HFD for 4 weeks, injected intraperitoneally with STZ, then sacrificed at week 15. Aortic endothelial nitric oxide synthase (eNOS), aortic superoxide dismutase (SOD), endothelial-dependent and independent relaxation and contraction, intima-media thickness (IMT), malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) were measured. Histopathological characteristics also were assessed. Diabetic rats exhibited higher fasting blood glucose (FBG), low density lipoprotein, total cholesterol and triglycerides compared to the control group. Aortic endothelium-dependent relaxation due to acetylcholine (ACh) was lower, while aortic endothelium-dependent contraction due to calcium ionophore and endothelium-independent contraction due to phenylephrine (PE) were higher for the diabetic group. eNOS expression was lower in the diabetic group compared to controls. IMT and MDA levels were increased, while SOD activity was decreased in the diabetic group compared to controls. TNF-α was higher in the diabetic group than for controls. Our type 2 diabetes model exhibited endothelial dysfunction associated with early vascular structural changes, dyslipidemia, increased vascular oxidative stress, and inflammation. Therefore, the model is suitable for studying diabetic atherosclerosis.

Biotech Histochem (Biotechnic & histochemistry : official publication of the Biological Stain Commission)
[2021, 96(7):498-506]

Cited: 2 times

AltMetric Statistics

Additional resources:



0.4692 s